
GUIDANCE FOR WRITING
GOOD SAFETY
REQUIREMENTS
TECHNICAL GUIDE

GUIDANCE FOR WRITING
GOOD SAFETY REQUIREMENTS

TECHNICAL GUIDE

Civil Aviation Technical Service

Environment, Systems and Operations Safety, Planning Department

1st edition

V1R3 of 12/01/2021

AUTHORS

Laurent PLATEAUX
Head of Program

(DGAC/DSAC)

Laurence MORIN
Head of Program

(DGAC/STAC)

PROOFREADING COMMITTEE

André BARKAT
 Head of Division "Air Navigation"

(DGAC/STAC/Department Environment, Safety of Systems and Operations, Planning)

Victor BOULANGER
Project Manager, Airport Safety and Capacity Division

(DGAC/STAC/Department Environment, Systems and Operations Safety, Planning)

Romain BUFFRY
 Head of Division "Equipment"

(DGAC/STAC/Department Security, Equipment)

Guillaume ROGER
 Scientific and International Advisor - International Affairs

(DGAC/STAC/Directorate)

Abstract
The Commission Implementing Regulation (EU) n°2017/373, known as IR ATM/ANS, integrates
in its regulatory requirements and means of compliance all the principles developed in the
current system engineering standards. Indeed, as these standards aim to ensure the control
of systems complexity, the proposed approaches are perfectly adapted to complex socio-
technical systems such as air traffic control functional systems.

By incorporating all system engineering key concepts, the IR ATM/ANS puts the quality of the
requirements at the core of the argumentation of safety assessments or safety support
assessments.

This guide is intended to accompany this evolution by compiling some good practices in
terms of requirements writing. The aim of these good practices is to facilitate the
management of requirements, to ensure that they are properly considered when designing a
new system or as part of a change, and to ensure that they are effectively and completely
validated and verified.

The different types of requirements are discussed as well as their properties and the
appropriate verification methods. Some writing rules are also proposed.

This guide may be used by any person or organisation whose vocation is to develop safety
assessments or safety support assessments, as well as anyone involved in the specification of
socio-technical systems.

Keywords
Air navigation, safety studies, requirements, writing, good practices, guide, guidance, standards

CONTENTS

1. PREAMBLE 6

1.1. Reminder of the context 6

1.2. Purpose of the document 6

1.3. Contents of the guide 6

1.4. Reference documents and standards 7

2. DEFINITIONS 8

3. THEORETICAL CONSIDERATIONS 10

3.1. Notion of requirement: definition and objective 10

3.1.1. Definition 10

3.1.2. Objective 10

3.1.3. The concept of specification 11

3.1.4. The notion of needs 11

3.2. Characterisation and typology of requirements 12

3.2.1. Functional requirements 13

3.2.2. Non-functional requirements 14

3.2.3. Constraints 16

3.2.3.1. Design constraints 16

3.2.3.2. “Other” constraints 17

3.3. Safety : a typology and an attribute 18

3.4. Level of requirements and traceability 21

3.5. Requirements testing and traceability 22

4. THE GOOD PRACTICES FOR WRITING REQUIREMENT 24

4.1. The good properties of a requirement 24

4.1.1. The 11 characteristics of a good requirement 25

4.1.2. The MUST : Measurable/Unique/Simple/Traceable 27

4.1.3. SMART : Simple/Measurable/Attainable/Realistic/Traceable 27

4.2. In practice 28

4.2.1. Defects found and how to correct them 28

4.2.2. Examples 29

TABLE OF FIGURES

Figure 1 : Typology of requirements 12

Figure 2 : Safety typology and attribute 19

Figure 3 : Summary of requirement flows and traceability 23

This guide proposes some rules of good practices
for writing the safety and safety support require-
ments needed to control changes to the
functional systems of air navigation service
providers.

Although the purpose of this guide is to provide a
framework for writing safety requirements
defined within the framework of regulatory
assessments, it is applicable to all types of requi-
rements for all types of projects.

Chapters 1 and 2 frame the document and define
the main terms used.

Chapter 3 presents a theoretical part on the
definition of the notion of requirement and the
main principles for writing requirements.

In Chapter 4, some examples of requirements are
provided with do's and don'ts.

This guide will be enriched over time in terms of
examples or new practices.

For more details on the processes for defining,
writing or managing requirements, as well as on
the general principles of system engineering,
everyone can refer to the standards listed in §1.4.

6

This guide is intended to provide guidance to air
navigation service providers or any other aviation
stakeholder for writing clear and efficient requi-
rements. It does not in any way replace the
regulations in force if it contradicts them. It is
intended for any person contributing to the
requirements specification process, whether for
writing or for the verification of the require-
ments. Although the principles of requirements
writing developed in this guide are easily approa-
chable, the contextual elements as well as the
justifications for certain practices require an
awareness of the elementary principles of
systems engineering. This concerns in particular
the notion of the engineering tier, the role of
different processes and the different typical
engineering data produced during a complete
system engineering process.

Within the framework of safety assessments, or
safety support assessments, the service provider
must define requirements. Their fulfilment will
guarantee compliance with safety criteria or
objectives and thus ensure a level of safety or
service in line with regulatory and operational
needs.

These requirements, known as "safety" or "safety
support" requirements, play a key role in the
regulatory demonstration of change control, as
required under EU Regulation n°2017/373. The
quality of the requirements is a key point
essential to the development of the argument
and requires the application of good practices.
The implementation of the latter ensures both a
good understanding of the objectives sought and
an appropriate demonstration.

It shall be noted that even if the application of
the most advanced engineering standards is
sought, the terminology used in this guide may
sometimes be different to keep a usual, unders-
tandable and more widely used vocabulary in this
domain.

1. PREAMBLE

6 Guidance for writing good safety requirements

1.1. REMINDER OF THE CONTEXT 1.2. PURPOSE OF THE DOCUMENT

1.3. CONTENTS OF THE GUIDE

77

[Ref 5] SEBoK Editorial Board. 2020. The Guide to
the Systems Engineering Body of Knowledge
(SEBoK), v. 2.2, R.J. Cloutier (Editor in Chief).
Hoboken, NJ: The Trustees of the Stevens Institute
of Technology. www.sebokwiki.org. BKCASE is
managed and maintained by the Stevens Institute
of Technology Systems Engineering Research
Center, the International Council on Systems
Engineering, and the Institute of Electrical and
Electronics Engineers Computer Society.

[Ref 6] specief.org - Society for the Promotion and
Certification of French Language Requirements
Engineering - http://www.specief.org

[Ref 1] ISO/IEC/IEEE 15288:2015 - Systems and
software engineering - System life cycle processes.

[Ref 2] ISO/IEC/IEEE 29148:2018 - Systems and
software engineering - Life cycle processes -
Requirements engineering.

[Ref 3] ED-153 - Guidelines for ANS Software
Safety Assurance - Issued in August 2009.

[Ref 4] ED-109A - Software Integrity Assurance
Considerations for Communication and
Navigation and Surveillance and Air Traffic
Management (CNS/ATM) Systems - Issued in
January 2012.

Guidance for writing good safety requirements

1.4. REFERENCE DOCUMENTS AND STANDARDS

8

2. DEFINITIONS

CONCEPT OF OPERATIONS
SEBoK [Ref 5], SEBoK "Outlines the assumptions
and intentions of an organization with respect to
a transaction or series of transactions" [Ref 5].

REQUIREMENT
"Expression that defines the property or constraint
of a system, product or process that is
unambiguous, clear, unique, consistent, complete,
verifiable and deemed necessary to meet an
operational need", SEBoK [Ref 5].

"Characteristic observable from outside a given
entity", Alan Davis ["201 principles of software
development"].

SYSTEM ENGINEERING
System engineering is a structured and interdisci-
plinary scientific approach. The aim of which is to
formalise and apprehend the design, validation
and verification of complex systems. Its objective
is to master and control the design of systems
whose complexity does not allow a simple
approach.

SPECIFICATION
The system specification contains all the
functional and non-functional requirements and
design constraints necessary for the accurate and
complete description of a system. It constitutes
the technical reference for the design, verifi-
cation and validation of the system.

NEEDS
Needs express what a user or an organisation
needs to have in order to accomplish a given
mission. They are expressed from the perspective
of the end user and usually in natural language.
They can be written in a more or less formal way,
such as the User Stories frequently used in agile
methods.

OPERATIONAL CONCEPT (OF A SYSTEM)
"Statement of the assumptions and intentions of
an organisation with regard to an operation or
series of operations of a cooperating system or
set of systems", SEBoK [Ref 5].

Note: Note that [Ref 5] distinguishes between the
"operational concept" which is specific to a given
system or set of systems and the "concept of
operations" which has a broader scope, at the
organisational level. The term CONOPS is rather
associated with the latter notion, however, in the
context of the development of a given system one
will often allow oneself to call CONOPs the
operational concept of the system under conside-
ration. Indeed, from the perspective of a given
system, the concept of operations and the
operational concept are equivalent. The concept of
CONOPS in this guide, and particularly in the abbre-
viations, will refer to the operational concept of a
system and not to the concept of operations of an
organisation.

8 Guidance for writing good safety requirements

9

SYSTEM
A set of components structured to accomplish
one or more purposes.

The term "system" in this guide is taken in a
broad sense and can refer to a technical system,
a software, a socio-technical system, a system of
systems, a management system, a process
system, etc.

VALIDATION
All activities necessary to demonstrate that the
specified requirements are correct and complete
in relation to the operational need. Validation
answers the question: "Have we specified and
designed the right product?".

Guidance for writing good safety requirements

VERIFICATION
All activities necessary to demonstrate that the
specified requirements are met by the system as
implemented. The verification answers the
question: "Does the system behave as specified?".

10

3. THEORETICAL CONSIDERATIONS

3.1.2. OBJECTIVE
A requirement has the difficult task of expressing
what is expected from a system. It must express
the "what", "what should the system do? "as
opposed to the "how" which is a matter of system
design. A requirement that expresses the "how" is
generally not consistent with the property that a
requirement must be "externally observable",
however, as it will be seen later in §3.2.3, it is
sometimes necessary to constrain the design.

Requirements play a key role in the system design
process. Indeed these requirements are defined:

n For the system's sponsor, for evaluating the
good understanding of its needs;

n For the developer/designer, for the actual reali-
sation and implementation;

n For verifiers and validators, for assessing the
relevance and completeness of verification and
validation activities.

Due to the multitude of players involved in
handling a requirement and the central role of
the requirements in the system engineering
activities, it is fundamental to attach great
importance to it.

The achievement of all these objectives depends
to a very large extent on the quality of the requi-
rements.

Guidance for writing good safety requirements

3.1.1. DEFINITION
One of the most commonly accepted definitions
in the world of system engineering is that, for a
given system, a requirement is the expression of a
property that this system must satisfy in order to
comply with the needs for which it is designed.

The term "property" can refer to different
characteristics of the system such as functiona-
lities, non-functional characteristics, constraints,
performances, interfaces, etc. We will see below
how the requirements for these different charac-
teristics are expressed.

This definition is usually supplemented by a
strong property that a requirement is a characte-
ristic observable from outside the system of
interest.

DEFINITION
A requirement is the expression of a property
that a system must satisfy in order to comply
with the need for which it is designed.

PROPERTY OF A REQUIREMENT
A requirement is a characteristic observable
from outside the system of interest.

Statistics on project failures and delays (Standish
Group, for example) show that more than 50% of
these failures are due to faulty requirements:
ambiguous, incomplete, inaccurate, forgotten,
implicit, obsolete, etc.

3.1. NOTION OF REQUIREMENT: DEFINITION AND OBJECTIVE

11

3.1.4. THE NOTION OF NEEDS
There is also frequent reference to the notion of
"needs“ in engineering, with a particular link
between "needs" and "requirements". Although
there is also no absolute definition of the term
"needs", it is commonly accepted that it is an
expression of "For whom" and "For what" and is
usually at the level of the operational use of the
system. The needs are to be related to the
expected operational missions and are generally
expressed from the end-user's point of view and
in a more natural and less formalised way than the
requirements. Nevertheless, in some contexts
they will be found in the form of fully formalised
requirements. Like requirements that are
compiled in a specification, needs are brought
together in an operational concept or expression
of needs.

The specification of the system(s) should cover all
the needs identified in the operational concept.

3.1.3. THE CONCEPT OF SPECIFICATION
Combined with the requirements, it is common
to encounter the notion of "specification”.

A "specification" consists of a collection of require-
ments and often serves as a contractual or product
repository to define all the properties of a system.
While a requirement must be precise and complete
while having a unitary character, the challenge of a
specification is to be exhaustive, structured and
consistent. Indeed, it must contain all the types of
requirements necessary for the complete and
consistent definition of the system.

In addition to compiling the requirements, the
specification generally carries a part of the
explanation of the context and a part of the justi-
fication and understanding of the requirements.
These elements provide a link with design choices
as well as with the requirements or needs of the
higher tier. They also include essential elements
for the validation and verification of require-
ments. Furthermore, it is common for the specifi-
cation to contain a chapter dedicated to tracea-
bility between the requirements or needs of the
higher tier and those it contains.

Guidance for writing good safety requirements

DEFINITION
A specification is a collection of requirements
that specifies all the properties of a system.

As mentioned, a requirement serves both the
designer/developer of the system and the teams
in charge of its verification or validation.
However, these processes require to perform a
variety of activities and it is precisely for this
reason that it is useful to sort requirements:
depending on the type, the activities to be carried
out will be different and the expression of the
requirement will be adapted to the activities to
be implemented.

As seen above, a requirement is a property of a
product or system that defines what is expected
in relation to a particular need. It is quite
common that for expressing a given need, several
requirements are necessary as well as several
types of requirements.

Three main families of requirements are usually
defined:

n Functional requirements;

n Non-functional requirements;

n Constraints which may be design “constraints”
or so-called "other" constraints

We will see that within these 3 families, there can
be several other sub-families. However, it is
essential to understand, first of all, what the
purpose of classifying requirements is.

12 Guidance for writing good safety requirements

FUNCTIONAL
REQUIREMENTS

n Functions
n Behaviour
n Data

NON-FUNCTIONAL
REQUIREMENTS

n dependability
n Performances
n Ergonomics

n Design constraints n “ O t h e r ” c o n s t r a i n t s :
 Costs, deadlines, qualification,
 acceptance...

SYSTEM

Figure 1 : Typology of requirements.

Classifying a requirement allows to anticipate
the design and verification/validation activities
to be carried out.

CONSTRAINTS

3.2. CHARACTERISATION AND TYPOLOGY OF REQUIREMENTS

13

error, unexpected value, excessive flow rate, lack
of data, untimely push of a button, action
detection). The main difficulty in formulating a
robustness requirement is to define the
conditions under which the behaviour is
expected. Just as it is easy to define the data and
conditions for which we expect a precise
behaviour, it can be extremely tedious to define
all the unforeseen or unexpected conditions for
which a robustness action will be necessary. In all
cases, care should be taken to avoid negative
wording and to specify the expected behaviour
(and not the forbidden one!) in the event of
abnormal situations. Several examples are
proposed in this guide in paragraph 4.2.

All functional requirements shall be translated
into a functionality to be realised/accomplished
by one or more system elements: a function of a
software component, a mechanical or electronic
behaviour, a human action, any activity.

In terms of validation and verification activity, in
the vast majority of cases, the functional require-
ments will be:

n Validated, a priori, by simulation, analysis,
equivalence or prototyping, or, a posteriori, by
test, demonstration, operational evaluation, or
other means, and;

n Verified by tests.

3.2.1. FUNCTIONAL REQUIREMENTS
Functional requirements are the most common
requirements for technical systems in particular.
Their purpose is to specify the expected
behaviour of the system and to answer the
question "what should my system do". As we will
see later in the writing rules, a functional
requirement is often formulated in the form
"System X must [do something] [with such
performance]". Again, the focus should be on the
"what" and not the "how".

Functional requirements should be formulated to
describe only one behaviour as far as possible.
This behaviour must be described at the system
boundaries in such a way that the requirement
respects the property of being observable from
outside the system. Although they must be
unitary, they must also be complete, i.e. they
must define the expected behaviour completely,
within the requirement itself and mention:

n The system which has to implement the “requi-
rement”;

n The context in which the requirement is valid,
the prerequisites or preconditions ("in mode X",
"when this condition is met", "in this technical or
operational context", etc.), and the conditions
that must be met in order for the requirement to
be “valid”;

n The expected behaviour (the event needed, the
action or the result of the action, etc.);

n The precise interfaces that come into play
(human trigger, network interface, button,
mouse, switch, relay, protocol, etc.);

n Possible post-conditions (change of mode,
temporary unavailability, etc.);

n The expected performance of the action
(execution time, flow rate, power consumption,
response time, jitter, latency, height, power,
distance, etc.) and/or the result of the action
(accuracy, tolerance, duration, force, tempe-
rature, etc.).

Robustness requirements, although often
considered as a separate topic, are nothing more
than functional requirements which are intended
to define the expected behaviour in the event of
unexpected or unsuitable situations (syntactic

Guidance for writing good safety requirements

3. THEORETICAL CONSIDERATIONS

Robustness requirements are primarily
functional requirements and shall also be
specified for validation and verification.

Functional requirements are always translated
into one or more functions to be implemented
in one or more system elements.

As far as possible, these interface requirements
should be as precise as possible in order to
identify, on the one hand, the nominal operating
domain and, on the other hand, the degraded
modes or those requiring robustness.

Concerning the verification of interface require-
ments, this is done from 2 persperctives. Firstly, it
involves proofreading, ensuring that the interface
requirements are all covered by the functional
requirements and correctly referenced. In
particular, all output interfaces must be
addressed by at least one functional
requirement.

Secondly, it consists in checking their correct
implementation. However, this is done indirectly
through the verification of the functional require-
ments based on the interfaces. There is therefore
no actual interface tests, but the functional
requirements must be tested to effectively
exercise all interfaces.

3.2.2. NON-FUNCTIONAL REQUIREMENTS
Non-functional requirements include all require-
ments that are not intended to express
behaviour. They usually reflect a general charac-
teristic of the system (the following list is not
exhaustive):

n Form factor (size, volume, weight);

n Ergonomics;

n General performance in relation to available
resources (power consumption, CPU/Memory
use, number of operators, maximum throughput,
etc.);

n Operational and technical environment
(temperature, humidity, vibrations, noise,
seismicity, etc.);

n Intrinsic performance of the system (opera-
tional dependability [reliability, availability,
maintainability, testability], safety, security, etc.).

The specification of functional requirements
requires precise knowledge of the input data
handled, the output data, the types of possible
triggers or interactions and their characteristics.
This information is generally formalised within
interface requirements.

These make it possible to define all the interfaces
involved in exchanges between the system of
interest and the outside world. Just as a
functional requirement must be observable from
the outside, an interface requirement must only
concern interfaces used for interaction with the
outside of the system. Please note that interfaces
between system elements, i.e. internal to the
system, will be defined during the system design
and formalised in the specification of lower level
components.

The challenges of interface description are
completeness and accuracy. While deficient
requirements are the cause of more than 50% of
project failures, interface problems, although
often easier to solve and rarely leading to project
abandonment, are responsible for a large part of
project redesign and rework. Since these require-
ments can only be verified in a simulated or even
operational context, i.e. very late in the process,
the cost of taking over these anomalies is often
very high. While it can be extremely laborious for
the person specifying the system to identify and
list the interfaces exhaustively, it is important to
be aware that any lack or imprecision will be a
great source of error in the implementation
because no one is better placed than the
specifier of the requirement to characterise the
target system's operating environment.

14 Guidance for writing good safety requirements

Interface requirements must comprehensively
specify all interfaces between the system itself
and the outside world. They are indispensable
input data for writing functional requirements.

15

In terms of validation and verification, the
activities carried out are generally different from
the ones for functional requirements and most of
the time require different means, longer
durations, analysis or synthesis of several tests.
Certain characteristics, which are difficult to
assess within acceptable test durations, will be
verified by analysis and confirmed during
prolonged use or will require means to speed up
observations. This is the case, for example, for
performances such as reliability, which can be
verified a priori by analysis or simulation and
confirmed during use. Similarly, a requirement
specifying the prohibition of any single cause of
failure will have to be verified by analysis of the
architecture.

Performance requirements need a specific focus.
The attentive reader will have noted that
performance is addressed for both functional
and non-functional requirements. It is important
to dissociate, on the one hand, the performance
associated with a given function and, on the
other hand, the general performance of a system.
The former must be specified within the
functional requirements concerned so that it is
clearly identified for the implementation of the
requirement as well as for its verification which
will have to measure this performance.

For example, within the same requirement, it
should be specified: "When the operator pushes
button X, system Y shall display the position of
object Z in less than 1 second with an accuracy of
5 metres". Functionality achieved with degraded
performance will not be deemed to meet this
requirement.

The formulation of these requirements is quite
different from that of the functional require-
ments since there is no specific action expected
but rather a general property of the system.
Nevertheless, these requirements will have to be
precise and complete, just like the functional
requirements, and will have to define:

n The system concerned by the requirement;

n The context of validity of the requirement

n The non-functional characteristic addressed in
the requirement;

n The quantitative or qualitative “objective”;

n The tolerance or accuracy with which the
objective must be achieved (an absolute
objective is often unrealistic).

In contrast to functional requirements, which are
directly translated into functions on the system
components until they are finally implemented,
non-functional requirements generally influence
design choices and architecture. This is particu-
larly well illustrated by an availability type
requirement which will not correspond to any
particular function at the level of the system of
interest but which is likely to constrain the archi-
tecture to achieve the expected level of availa-
bility, for example by using redundancy of system
elements. These non-functional requirements
may nevertheless require the implementation of
additional elements for the needs of the archi-
tecture and thus generate (not decline!)
functional requirements on the system elements.
For example, in the case of redundancy, it is likely
that this will induce requirements on failover, on
the restoration of functions, on the synchroni-
sation of states, etc.

Guidance for writing good safety requirements

3. THEORETICAL CONSIDERATIONS

Non-functional requirements in most cases
influence the system architecture and not
directly the functionality of the system
components.

The performance of a function must be
specified in the requirement dealing with that
function, while an overall performance must be
the subject of a specific performance
requirement. The framework for their verifi-
cation will be quite different.

3.2.3.1. DESIGN CONSTRAINTS
Design constraints are special requirements in
the sense that they constrain the design of a
system not by functional needs but by imposed
design choices. These design constraints may be
the result of regulatory constraints, norms and
standards applicable to a given field or feedbacks
and experience on similar systems. These
constraints consist in constraining the solution.

For example, a design constraint could be: "The
TEST system must be based on the Windows 7
update x operating system. ». This requirement de
facto constrains the product architecture vis-à-vis
the operating system and further constrains,
indirectly, the performance, functionalities, and
hardware platform. In this case, it will be necessary
to be vigilant about functional requirements
requiring hard real time, incompatible with a
technology such as Windows, performance requi-
rements in terms of power consumption that are
incompatible with the hardware platforms
supported by Windows 7, the use of applications
that are incompatible with it, etc. Despite the risks
or constraints that this brings, such a design
constraint may be justified by a need to harmonise
the computer population for its administration, by
staff training or competence issues or by cost
issues. It will therefore be necessary to ensure that
it is consistent with the functional requirements of
the product.

The second type of performance requirements
are attributes of the overall system and can be
formulated in a more general way, without
referring to a specific functionality. Generally,
specific tests (load, endurance, environment,
etc.) will have to be implemented, beyond a
simple functional test. It will therefore be
possible to specify "system X must have an
operational availability of 360 days out of 365" or
"the memory occupation of system X must
always be less than 80% of its total capacity".

Within the framework of performance require-
ments, it is also possible to find human
performance requirements relating to the
expected efficiency of the tasks performed,
reaction times or other.

3.2.3. CONSTRAINTS
Among the constraints, it is possible to
distinguish 2 categories. The first concerns so-
called design constraints which have a deliberate
and immediate influence on the design choices of
the system. The second concerns constraints that
are more related to the development or
production environment of the system and does
not immediately constrain the architecture. It
can constrain the design of the system but
indirectly.

Whichever category we are interested in, the
fundamental aspect of constraints is that they
must in no way contradict functional or non-
functional requirements. If this were to happen,
it would ultimately mean that we would have
feasibility issues for functional or performance
aspects. The difficulty is this incompatibility may
not be detectable until very late in the
development cycle. Therefore, it is important not
to over-specify any constraints whatsoever and
to prefer an approach that favours the specifi-
cation of the right needs in a precise and
complete manner.

16 Guidance for writing good safety requirements

Design constraints constrain the architecture
of the system of interest, in its organisation or
in the choice of its components. It is necessary
to ensure the compatibility of the design
constraints with the functional requirements
that carry the operational needs.

17

3.2.3.2. “OTHER" CONSTRAINTS
The second category of constraints, the so-called
"other" constraints, are not related to an
operational or technical need of the system as
such, but rather to the development context or
environment. These constraints generally relate
to the phase of the life cycle of the system that
corresponds to the development or production
of the system and not to its use.

These constraints include, for example, maximum
development cost, time constraints, specific
processes to be applied, regulatory constraints,
production environment, etc.

Verification of these constraints will also not be
done by testing and will instead consist of
inspection or review of development plans,
project planning elements or demonstration of
regulatory compliance.

Like design constraints, these "other" constraints
should not contradict the functional require-
ments of the system to be designed. If this were
the case, it would constitute an inconsistency
and could lead to a feasibility problem. For
example, developing a highly complex system
implementing extremely innovative functiona-
lities with such strong cost and time constraints
that they become incompatible with the desired
functional objectives. One could also consider a
constraint on a test environment that is incompa-
tible with the performance levels sought and to
be measured.

While the "design" constraints are generally
formalised in the system specifications, given
their immediate influence on the design of the
system, the "other" constraints are more likely to
be included in the project scoping documents.

Design constraints have an immediate impact on
the architecture of the system: either in terms of
the organisation of the components, or in terms
of the choice of components themselves. If the
use of design constraints can be fully justified, it
will be preferable to specify the real need
imposing this choice. This allows:

n To open up the possibilities in terms of
technical solutions;

n To avoid the risks of inconsistency between a
functional or performance requirement and a
design constraint;

n To better capture the real need for further
developments;

n Not having to revise the specification in case of
obsolescence management.

Verification of design requirements is usually
done by analysis or inspection. Indeed, as they
only specify architectural constraints or design
choices, they do not correspond to a specific
behaviour. However, it will be necessary to
ensure during the verification tests that the
design constraints do not prevent the
achievement of a functional requirement.

Design constraints can be diverse and concern
issues of architecture, design, regulatory
compliance, application of design standards,
reuse of existing material, etc. In most cases, they
are linked to the operational and technical
environment of the system.

Guidance for writing good safety requirements

3. THEORETICAL CONSIDERATIONS

n As for the second type, it is rather an attribute
that cuts across the typologies seen above.
Indeed, we will encounter both functional safety
requirements and non-functional safety require-
ments. This attribute is the result of safety assess-
ments identifying certain properties of the
system necessary to ensure a given level of safety.
This attribute facilitates the monitoring of requi-
rements that contribute to the achievement of
safety objectives or criteria but does not
constitute a typology as such. For example, these
requirements will include functional require-
ments for safety functions ("If a hardware failure
is detected, system X shall send a [FAIL_MAT]
message to the supervisory system within 5
seconds", "If no message is received for more
than 5 seconds, system X will display a red [Loss
of Connection] banner as defined in the HMI
definition ref [YYYY].”, "The operational availa-
bility of system X shall be greater than 363 days
out of 365 with total downtime of less than 4
hours", "System X shall not have a single cause of
failure", "System X shall have 2 redundant
functional channels. ", etc.).

We have seen in the previous paragraphs
different typologies of requirements that allow a
given system to be described as exhaustively and
precisely as possible. All these requirements have
their place in the design of a system, either in the
architecture (non-functional requirements) or in
the functionality of the components (functional
requirements).

In the field of air traffic control and, more
generally, in so-called critical or safety areas,
there is a type of requirement that plays a very
special role. These are the "safety requirements".

It is important to distinguish between two types
of safety requirements:

n The first is effectively a typology of requirement:
this is a type of requirement that belongs to the
non-functional requirements and which generally
aim to set the objectives or criteria for the safety
of the system: failure rate per operational hour,
operational availability, maximum severity of a
failure, etc. These criteria are often derived
directly from risk acceptability matrices or
methods such as HAZOP (Hazard and Operability
analysis), ALARP (As Low As Reasonably Practical),
FHA (Functional Hazard Analysis);

18 Guidance for writing good safety requirements

3.3. SAFETY: A TYPOLOGY AND AN ATTRIBUTE

Among the safety requirements, a clear
distinction must be made between non-
functional safety requirements, which set the
safety objectives to be achieved, and require-
ments with a safety attribute, which aim to
achieve the safety objectives.

19Guidance for writing good safety requirements

FUNCTIONAL
REQUIREMENTS

n Functions
n Behaviour
n Données

NON-FUNCTIONAL
REQUIREMENTS

n Dependability
n Performances
n Ergonomics

n Design constraints n “ O t h e r ” c o n s t r a i n t s :
 Costs, deadlines, qualification,
 acceptance...

Figure 2 : Safety typology and attribute.

Functional
“safety” requirements

n detection
n safety features

SAFETY REQUIREMENTS:

n safety criteria
n safety objectives

“Safety” design constraints:

n no common mode
n regulatory constraints
n software assurance level

Non-functional
“safety”
requirements:

n reliability/
availability
n CPU occupation
n crossing time...









Safety requirement

Requirement having a safety attribute
and deriving from a safety requirement

SYSTEM

CONSTRAINTS

3. THEORETICAL CONSIDERATIONS

20

The EU regulation n°2017/373 highlights the
importance of the safety requirements which, if
met, make it possible to demonstrate the
fulfilment of the safety criteria of a change for a
so-called ATS provider. The safety requirements
referred to in the regulation bring together both
safety requirements in the strict sense (safety
objectives/criteria) and functional/non-functional
requirements/safety constraints, the latter
generally deriving from the former. It is the
demonstration that all these requirements have
been met that will give the the argument validity.

This EU regulation n°2017/373 also defines the
notion of "Safety Support Requirements" for
certified services of so-called non-ATS providers.
This notion of "safety support" is close to the
attribute of safety and does not in itself
constitute a typology of requirement. These
requirements may be functional, non-functional
or constraints. They are described as "safety
support" to highlight their importance in the
provision of the final non-ATS service, given their
direct contribution to the level of safety of the
ATS service using it.

In the context of safety requirements, it is also
common to encounter requirements that relate
more to processes, derived from contractual or
engineering constraints. Although these require-
ments are important in terms of meeting safety
objectives and criteria, they generally have no
place in a system specification, as their verifi-
cation is part of more global activities than those
involved in the verification of a system. They must
therefore be formalised in the development plans,
in the processes and/or the project management
part of a contract, etc. A typical case of such a
safety requirement is "System X software must be
developed with a development assurance level of
ED109A/AL4 or ED153/SWAL3". This requirement
does not provide any information on what the
software should do but constrains the
development processes to achieve the functio-
nality specified by the functional and non-
functional requirements. Only the implementation
of development processes and a suitable organi-
sation will ensure that this requirement is met.
Compliance with this safety requirement must
always be associated with a given functional
baseline for the system and the software .

Associated with the level of requirements, we syste-
matically find the notion of traceability. This tracea-
bility, which links together the upstream and
downstream requirements, is precisely intended to
facilitate the evaluation of the coverage of require-
ments from one level to another and we will see that
this need for traceability requires favouring on the
one hand the uniqueness of the behaviour described
in a requirement and on the other hand the unique
identification of the requirements. Thanks to these
properties, traceability will allow in particular:

n For downstream traceability:

 To check that requirements above are covered
by the requirements below;

 To carry out impact assessments whether a
change in upstream requirements occurs.

n For upstream traceability:

 To verify/justify the need for a lower-level
requirement (unwanted function);

 Carry out an impact analysis on the system
service when changing a component.

The notion of level of requirements is used to
define the level or tier of engineering under
consideration. When a requirement is expressed,
it is imperative to identify the level of the system
at which one is situated. Therefore, we will see
that a requirement must be formulated in a form
such as "system X must...". Understanding this
notion of level is a prerequisite if we want to
respect the property which says that a
requirement must be observable at the system's
boundary.

It is not possible in this guide to further develop
the notion of requirement levels and the role that
the design process plays in this notion, however
this aspect is fundamental to achieve correct
requirement formulations and to understand how
to ensure a correct flow of requirements from
one level to another. For this purpose, it will be
useful to refer to works or standards (see §1.4)
which deal in detail with the subject of system
engineering.

For the purposes of this guide, it should be kept
in mind that an important activity in require-
ments verification is to ensure that the coverage
of the requirements of one level is fully covered
by the requirements of the lower level. This
ensures, step by step, that all operational require-
ments are well implemented or realised and
available. It also identifies possible limitations
when certain requirements are not met or when
performance is not achieved. These considera-
tions make even more sense when dealing with
safety requirements.

21Guidance for writing good safety requirements

3.4. LEVEL OF REQUIREMENTS AND TRACEABILITY

3. THEORETICAL CONSIDERATIONS

The demonstration of this completeness will
usually be based on traceability between require-
ments and verification/validation activities. This
could classically be a traceability link between a
requirement and one or more tests within the
framework of a verification activity but also a
traceability link between a design requirement
and an analysis activity demonstrating the satis-
faction of the requirement or a traceability link
between a requirement and a demonstration
report within the framework of a requirement
validation activity.

This need for traceability implies the uniqueness
of the requirements as well as clear identifi-
cation.

As seen above, requirements constitute the
applicable reference framework for defining
verification and validation activities. For each
level of requirement, it is possible to associate a
level of verification and/or validation, from the
most unitary component to the complete
integrated system. The relevance of the verifi-
cation and validation is all the greater as it is
possible to establish the completeness of the
tests regarding the different behaviours expected
from the system in all conceivable configurations.

22 Guidance for writing good safety requirements

3.5. REQUIREMENTS, TESTING AND TRACEABILITY

Traceability between the requirements on the
one hand and the verification and validation
activities on the other hand provides the indis-
pensable support to demonstrate the comple-
teness of the verification and validation.

3.6. SYNTHESIS

The set of requirement typologies seen earlier
and the flow of requirements between the
different engineering activities are summarised in
the Figure 3. The V-cycle representation allows to
clearly identify the different traceability relation-
ships as well as the different flows. However, this
representation does not presume the dynamics
of the applied development or lifecycle, nor the
form that requirements, traceability links or data
transfers may take.

This representation is perfectly valid for a
development cycle of the Cascade, Spiral or
Scrum type.

23Guidance for writing good safety requirements

Figure 3 : Summary of requirement flows and traceability.

Glossary of the figure:
 FT: Fault Tree

 FMEA: Failure Mode, Effects Analysis

 CONOPS: Concept of Operations

 MBSA: Model Based Safety Assessment

 PSSA: Preliminary System Safety Assessment

 SSA: System Safety Assessment

3. THEORETICAL CONSIDERATIONS

n Provide the reference for carrying out:

 The system design;

 Validation and verification activities,
including the establishment of tests.

For this purpose, the requirements must follow
writing rules to limit the risk of ambiguity and
ensure that they are understandable by all stake-
holders.

As seen above, the requirements are first a colla-
borative tool that allows exchanges on the
system's expectations between the prescriber of
the need, the implementer and the verifier.
Indeed, the requirements are written to:

n Establish unambiguously and in technical
terms what is to be achieved;

24 Guidance for writing good safety requirements

4. GOOD PRACTICES FOR WRITING
 REQUIREMENTS

4.1. THE GOOD PROPERTIES OF A REQUIREMENT

25Guidance for writing good safety requirements

A requirement must be... This means... Justification

Identified The requirement must have a
unique identifier.

This identification enables tracea-
bility to be established between
requirements, between require-
ments and tests, and also during
impact and development analyses.

Useful, Necessary The requirement must reflect the
expressed need, and only the
expressed need (linked to tracea-
bility see below).

Additional and optional features
add risks of inconsistency or
additional failure modes. In terms of
safety, particular care must be
taken to limit unnecessary functio-
nality.

Concise, unambiguous The requirement describes the
expected feature in a simple, short
and clear manner. It must be easily
readable and understandable by all
stakeholders. Care should be taken
to limit implicit considerations.

It does not contain any explanation,
reasoning, or justification. These
additions may be added as
comments or may be the subject of
footnotes.

The same word must have only one
meaning.

Ambiguity can come from specific
business vocabulary, vague words or
implicit information.

In the case of very present domain
semantics, acronyms or technical
terms, a glossary and a list of
definitions should be drawn up.

The ambiguity of the requirements
could be improved by having them
reviewed by different actors.

Simple, Unique The requirement specifies only one
behaviour. However, this behaviour
must be fully defined.

The uniqueness of the requirement
facilitates traceability between a
need (or several needs) and the
requirement, as well as between this
requirement and lower-level requi-
rements.

Independent of implementation The requirement indicates what is
to be done, but not how it is to be
done.

It should not describe how this need
is to be realised or implemented
unless there is a constraint from the
customer, the end-user, or the
environment, in which case it
should be classified as a
"constraint".

A requirement specifying how a
particular function should be
performed may create inconsis-
tencies with other functional requi-
rements and undermine the
feasibility of the product.

4.1.1. THE 11 CHARACTERISTICS OF A GOOD REQUIREMENT

26 Guidance for writing good safety requirements

A requirement must be... This means... Justification

Complete, self-sufficient The requirement must be self-
sufficient and contain all the
information necessary for its imple-
mentation and verification.

It recalls the context if necessary
(no implicit)

The requirement indicates the
system concerned, interfaces,
execution conditions, expected
behaviour, prerequisites, etc.

Non-redundant There is no overlap with any other
requirement.

Redundant requirements can lead
to inconsistencies in the long run if
they change.

If redundancy is detected, the 2
requirements concerned must be
reworded or one of the require-
ments must be eliminated.

Consistent, compatible with other
requirements

A requirement must not contradict
another requirement.

All requirements must be
compatible with each other.

It is a feature that relates to a
complete specification or set of
requirements.

Verifiable The requirement is sufficiently well
described to identify the criteria for
successful audits and to define
effective means of verifying the
requirement.

The various means available are:
inspection, analysis, demonstration
and testing (IADT).

The verifiable aspect of the require-
ments must be sought as soon as
the requirement is written. It is
advisable to involve, in the
proofreading of the requirements,
the people in charge of carrying out
the tests.

Achievable, feasible A requirement must be realistic.
There is a satisfactory technical
means of meeting the requirement
within the budget and time limits.

Traceable Any requirement must be traceable
to a higher-level need or
requirement in order to be able to
trace its origin.

This traceability also implies respect
for the uniqueness and unique
identification of a requirement.

27Guidance for writing good safety requirements

4.1.3. SMART:
SIMPLE/MEASURABLE/ATTAINABLE/
REALISTIC/TRACEABLE
SMART is a second mnemonic to estimate the
quality of a requirement:

n Specific/Simple: No unnecessary or redundant
information, clear and precise formulation,
understandable by all stakeholders, one defined
behaviour.

n Measurable: the requirement contains quanti-
tative and/or qualitative criteria for assessing the
level to be achieved. There is a method for
verifying the system against the requirement
(inspection, analysis, demonstration, test etc.).

 For example:

 "The radar runway display system must have
good performance" => not measurable

 "The radar track must appear in less than 500
ms in 95% of the time" => measurable.

n Attainable: the requirement is technically
feasible;

n Realistic: the requirement is achievable within
the given constraints (cost, resources, time, etc.).

n Testable and Traceable: traceability makes it
possible to identify the origin of the requirement
and to easily find its justification. It also allows
you to trace back to the tests.

4.1.2. THE MUST:
MEASURABLE/UNIQUE/SIMPLE/TRACEABLE
MUST is one of the simplest mnemonics for
retaining the essential characteristics of a
requirement:

n Measurable: the requirement contains quanti-
tative and/or qualitative criteria for assessing the
level to be achieved. There is a method for
verifying the system against the requirement
(inspection, analysis, demonstration, test etc.).

 For example:

 "The radar runway display system must have
good performance" => not measurable

 "The radar track must appear in less than 500
ms in 95% of the time" => measurable.

n Unique: No redundancy in requirements: a
unique identifier is required, a single piece of infor-
mation, strictly necessary and precise.

n Simple: No unnecessary or redundant infor-
mation, clear and precise wording, understan-
dable by all stakeholders, one defined behaviour.

n Traceable: Traceability makes it possible to
identify the origin of the requirement and to
easily find its justification. It also makes it
possible to trace to the tests.

4. GOOD PRACTICES FOR WRITING
 REQUIREMENTS

n Proscribe the negative form in the requirements:

 It is often tempting to formulate a requirement
in a negative form when a behaviour or property
has been identified that appears to be harmful or
detrimental to the system: "the system must not
do this" or "the XXX performance of the system
must not be less than/above this value". However,
this negative wording has several drawbacks:

 Behaviours that a system should not have are in
fact probably infinite. Even if some have more
serious safety or operational impacts than others, it
is not possible to characterise a system by what it
should not do. This would call for too much impli-
citness. Characterising completely and precisely
what it must do in the nominal and robustness
cases makes it possible to anticipate all functions
and malfunctions, including harmful ones.

 A negative requirement cannot be verified
objectively and completely. An equivalence class
approach makes it possible to verify the
behaviour specified in a positive requirement as
much as the verification that there is not a
situation in which the system will behave in such
a way requires going through all potential opera-
tional situations. This is not generally feasible.

 Negative wording is often a matter of need and
therefore expresses rather a justification of the
requirements. It will then be necessary to explicitly
define the requirements to meet this need. For
example, the following are examples of such requi-
rements:

 "The implementation of this new functio-
nality must not lead to regression" is not a requi-
rement and translates into "The development of
this new functionality will be carried out in
accordance with the XXX development
processes to ensure the non-regression of the
system";

 "CPU consumption must not exceed 80%"
will translate into "the CPU consumption of the
system must remain below 80% 90% of the time.
"and "When the CPU consumption of the system
exceeds 80%, the system must send an alert
[CPU_ALERT_80] to the supervisor and must stop
non-priority processes. ».

4.2.1. DEFECTS FOUND AND HOW TO
CORRECT THEM

n Avoid vague adjectives:

"Fault-tolerant", "faithful", "adaptable", "fast",
"slow", "ergonomic", "user-friendly", "sufficient",
"secure", "ad hoc", "robust", "relevant",
"different", "good", "excellent", "efficient".

n To be avoided:

"etc...", "and/or", "one or more" (replace by "the"),
"several".

n Use action verbs:

“provides”, “displays”, “calculates”, avoid
vaguer verbs such as “manage”, “support”,
“maximise”, “minimise”, “optimise”, “improve”,
“accommodate”.

n Use verbs in the present tense:

 "must" and not "should", "could".

n Avoid ambiguous terms:

"state of the art", "almost always", "approxi-
mately", "close to", "fairly", "often", "easily",
"few", "many", "enough", "appropriate",
"effective", "if possible", "when necessary", "if
necessary", "but not limited to", "as far as
possible".

n Clarify terms that are too general:

The "management", "the system", "the
equipment", "the function", "the inputs", "the
purpose", etc...

28 Guidance for writing good safety requirements

4.2. IN PRACTICE

4.2.2. EXAMPLES

n SYSTEM REQUIREMENTS

29Guidance for writing good safety requirements

What not to do Problem
Replace with

 (only as an example, some things
have been added to complete)

In order to minimise the disk space
required for archiving, the
components on the server's
operating system media should be
limited as far as possible to those
required for a server without a
graphical user interface so that the
installation image will fit on a CD (use
of "minimal" iso image).

This requirement is more of a
design constraint.

Vague terms such as "minimise", "as
far as possible". As long as it has to
fit on a CD, we know the maximum
size.

The fact that the selected operating
system does not contain the GUI is
either a solution or another
constraint. What if the size of the
operating system with GUI is
smaller than the size of a CD?

"To minimise the disk space needed
for archiving": this is the rationale
for the requirement, not to put it in
the requirement itself but in the
justification or in the need
generating the requirement.

Contraint_1: the installation image
of the X software must fit on a
single 700MB CD.

Contraint_2: the installation image
of the operating system of the X
software must contain all the
necessary elements for the instal-
lation of a server without a
graphical interface.

Contraint_3: All components that
are not necessary for the operation
of a server without a GUI for the X
software must be removed from the
installation image.

The choice of the format of the local
time source must be configurable.

This is both a functional
requirement and a design
constraint that requires a number
of things to be configurable.

To be specified: at power-up? via a
configuration file? online? Is there a
default format? The reference to
the interface definition folder is
also missing.

The possibility of configuration
must be defined: which formats are
available, definition of the
interface.

Exi_Fonc_1: The system shall allow
to set the format of the local time
source as defined in the interface
document ref XXX.

Contrainte_1: The choice of the
time source format is part of the
off-line parameters defined in the
ICD1 ref YYY and must be taken into
account when starting the software.

Or

Exi_HMI_1: the software's HMI, as
defined in the HMI specification ref
ZZZ, shall allow to modify the
format of the local time source,
which must be taken into account
without restarting in less than 30
sec.

1 ICD : Interface Control Document

4. GOOD PRACTICES FOR WRITING
 REQUIREMENTS

What not to do Problem
Replace with

 (only as an example, some things
have been added to complete)

In order to be able to investigate
possible problems, it must be
possible to activate a recording of
the received frames by parameteri-
sation.

This is not a requirement and
contains 2 considerations: The
possibility to record frames and the
fact that it is a setting.

The objective of the investigation is
the need and not the requirement
itself.

Exi_fonct_Enreg_1: System X must
enable and disable the recording of
all IP frames according to the
format defined in the document ref
YYY.

Exi_perf_Enreg_1: The increase in
processor load due to the activation
of the recording of received frames
must be less than 10%.

Exi_perf_Enreg_2: The increase in
memory occupancy due to the
activation of the recording of
received frames must be less than
10%.

Contrainte_Enreg_1: The X system
must have an off-line parameter file
as defined in the ICD ref ZZZ
allowing the activation and deacti-
vation of the frame recording and
which must be taken into account
when the software is started.

The server must have the necessary
tools/methods to establish a time
synchronisation performance
monitoring (current offset, synchro-
nisation distance, ...).

All performances to be monitored
must be listed precisely, no
suspension points should be used in
the requirement.

A choice must be made between
putting a design constraint on the
fact that the system contains
specific tools (these will need to be
listed and linked to particular
needs) or putting a functional
requirement that addresses system
capabilities. The latter is preferable.

Exi_function_Follow_Perf_1: The X
software must be able to present
the current offset to the nearest
millisecond.

Exi_HMI_Follow_Perf_1: the HMI of
the X software, as defined in the
HMI ref ZZZ specification, must
allow the current offset to be
displayed to the nearest millisecond
over a history of 30 min in steps of
10 sec.

Exi_function_Follow_Perf_2: The X
software must be able to present the
current synchronisation distance to
the nearest minute.

Exi_HMI_Follow_Perf_2: The HMI of
software X, as defined in the HMI ref
ZZZ specification, must allow the
current synchronisation distance to
be displayed to the nearest minute
with refresh times less than one
minute.

30 Guidance for writing good safety requirements

31Guidance for writing good safety requirements

What not to do Problem
Replace with

 (only as an example, some things
have been added to complete)

The partitioning performed by the
server installation must:

• leave space on the hard disk;

• separate (at least) the /var partition
from the system partition (log
saturation must not prevent server
operation)

Terms too vague: "available space",
"at least", use of negative trainer.

“Leaving space on the hard disk" is
not understandable. Available
space for whom? for what? another
partition?

This is both a design requirement
(separation /var and system) and an
expression of need (leaving space
available and preventing
saturation).

Exi_Install_1: the installation of the
system must ensure that the size of
data related to logging is limited to
x GB.

Note on this requirement: this could
be expressed as a logging duration.

This requirement can also be
expressed in the form of a
constraint:

Contraint_Install_1: The size of the
/var partition must be at least xGB
and the size of the system partition
must be at least 3 times the size of
the installed system.

Exi_Fonc_Logs_1: If the size of log
data exceeds 80% of the xGB
allocated to the logs, the system
must send an alert to the
supervision according to ICD XXX
and purge the oldest data.

The component allows you to
configure a delay in relation to the
time received from the time source.

What delay? What time source?

Requirement that cannot be tested
because we do not know what we
have to observe.

Exi_Fonct_Offset_1: The software X
must allow the time received
by the time source to be distributed
with a positive or negative
[Time_Source_Offset] as defined in
the XXX setting ICD.

Contraint_Offset_1: The system X
must have an offline parameter file
as defined in the ICD ref YYY
allowing the [Time_Source_Offset]
parameter setting and which must
be taken into account at the
software startup.

In DCI XXX:
[Time_Source_Offset]: integer, unit:
second, range [-60; 60], default
value: 0.

4. GOOD PRACTICES FOR WRITING
 REQUIREMENTS

What not to do Problem
Replace with

 (only as an example, some things
have been added to complete)

The DATEL frame is converted to a
time structure used for NTP broad-
casting.2

This requirement cannot be coded,
cannot be tested.

What should be observed?

Exi_Fonct_DATEL_1: The X server
should broadcast the [DAT_Time]
received by the [DATEL_Frames] to
lower-tier NTP components with a
period of less than 10 minutes. The
time must be distributed in the
format defined in ICD ref XXX and
within 500ms of receipt of the
actually broadcast DATEL frame.

Interface_Struct_NTP_1:
The [NTP_Time] must respect the
XXXXXXX format defined in the
RFCYY.

The status of the time chain
(GO/NOGO, status word) and the
consistency of the received time are
checked.

Incomplete requirement: the
condition is checked, so what?

What should be observed?

Rather, the requirement should take
the following form:
Exi_Fonct_Status_1: On receipt of a
DATEL time frame, if the "STATUS"
field of the time synchronization
chain (specified in ICD XXX) is
different from the expected states,
system X must send an alarm to the
supervision and reject the frame.
Exi_Fonct_Coherence_1: When a
DATEL time frame is received, if the
received time is not consistent with
the current time, system X must send
an alarm to the supervision and reject
the frame. The consistency check will
be done by applying the following
algorithm: XXX.

32 Guidance for writing good safety requirements

2 NTP: Network Time Protocol

33Guidance for writing good safety requirements

n SAFETY REQUIREMENTS

What not to do Problem Replace with

(Non-regression) The addition of the
Normal/Rescue toggle setting by
component X for Site 1 must not
interfere with the nominal operation
of the component at sites other than
Site 1.

Negative form
Non-testable (specify what is meant
by "must not interfere" and
"nominal operation"?)
Non-regression MUST be guaranteed
by the application of engineering
and safety processes (QMS and SMS)
and cannot be considered as a
requirement, even for safety.

Non-regression is the application of
internal engineering processes and
should not be a requirement. If it
were to be specified (for a contract
for example), it should take the
following form:

Exi_Secu_Processus:
The development of system X must
follow the development process of
the XXX company in order to
ensure the non-regression of the
system after modification.

(Non regression) The evolutions of
version V1.2 of the component do not
lead to a significant increase in the CPU
load of the component.

It is not a question of non-regression as
such, but only a performance
requirement.

The negative form is not recommended.

It is preferable to specify requirements
in absolute terms, as even a small
increase in an already saturated load is
not acceptable.

Moreover, the requirement is not
testable: It is necessary to specify what
a "significant increase" means?

Exi_Perf_CPU_1 : The CPU load of
software X must remain below 50% CPU
load on average over nominal load
scenarios as defined in document ref
XXX and below 90% load over 60
second periods in loaded scenarios as
defined in document ref XXX.

Validate the consistency of the
maps displayed during a Main/Back-
up toggle during the evaluation
phase.

Too vague.

Human activity that needs to be
made explicit.

Exi_Proc_Secu_Evalop_1 : During
the evaluation phase, during a
Main/Back-up switchover, the
controller must check the
consistency of the displayed maps
by applying the XXX procedure.

Or

Exi_Proc_Secu_Evalop_1bis : During
the evaluation phase, during a
Main/Back-up switchover, the
controller must check that the
displayed maps are identical in all
points (alternative: on the following
points to be explained).

4. GOOD PRACTICES FOR WRITING
 REQUIREMENTS

34 Guidance for writing good safety requirements

What not to do Problem Replace with

Check that the changeover
procedure is taken into account in
the Manex.

This is not a requirement as such
and does not specify a behaviour of
the system or its components. It is a
verification activity.

Exi_Proc_Secu_Toggle_Operator : In
case of warning of the following
malfunctions of the main system
(list ALL concerned malfunctions),
the operator must perform a toggle
action on the backup system within
2 min.

Exi_Proc_Secu_Toggle_Manex: The
Operator Manex must contain the
procedure for switching from the
main system to the back-up system.

Exi_Proc_Secu_Takeover_Training:
Operator training must enable
operators to perform a takeover
operation from the main system to
the back-up system in less than 2
min in 95% of cases.

All these rather operationally
oriented requirements must find
their counterpart in the technical
system:

Exi_Secu_Toggle_System : When
the operator initiates a toggle
command and the operating system
is the primary system, the operating
system must become the backup
system in less than 1 min.

Exi_Secu_Alarm_Default_Syst_Princ :
If the main system has one of the
following faults (put the exhaustive list
of faults concerned), the supervision
system must issue an alarm to the
operator and display an alarm on the
supervision HMI in less than 30 sec.

 Example of a safety requirement:
Exi_Safety_Objective : The rate of occurrence of system failures leading to separation losses greater than 50% must
be less than 10E-6 failures/operational hour.

 Examples of tagged functional and non-functional requirements [safety]:
Exi_supervision: [Safety] In the event of a hardware failure of the system, the supervision must report an alarm (as
defined in the HMI_Superv ref XXX specification) to the supervision operators in less than 15sec.
Exi_Performance_Display: [Safety] all objects on the screen must be displayed with a relative accuracy of 1% and
an absolute accuracy of less than 0.5Nm.

4. GOOD PRACTICES FOR WRITING
 REQUIREMENTS

Conception : STAC/Division documentation et diffusion des connaissances

Couverture : © Marie-Ange FROISSART DGAC /STAC
 © Richard METZGER DGAC /STAC

Crédit photos : © Fotolia page 7
 © Marie-Ange FROISSART DGAC /STAC page 9
 © Richard METZGER DGAC /STAC pages 20, 24

Février 2021

Direction générale de l’Aviation civile

service technique de l’Aviation civile

CS 30012 - 31 avenue du Maréchal Leclerc

94 385 Bonneuil-sur-Marne cedex FRANCE

Téléphone : 01 49 56 80 00

www.stac.aviation-civile.gouv.fr

www.ecologie.gouv.fr

