

Harmonisation of Skid Resistance Measurements on Roads

Presented by Martin Greene (TRL) 01 April 2016

Contents

1	Project overview
2	Skid resistance test programme
3	Data analysis and results
4	Next steps
5	Conclusions

Project overview

ROSANNE – ROlling resistance, Skid resistance, ANd Noise Emission measurement standards for road surfaces

- EC FP7 Small Collaborative Research Project
- Coordinator: AIT (Austria)
- Partners: TRL (UK) BRRC (Belgium)
 DRD (Denmark) TUG (Poland)
 VTI (Sweden) ZAG (Slovenia)
 BASt (Germany) DIN (Germany)
 IFSTTAR (France) FEHRL (Belgium)
 Third parties: CETE Ly-, CETE de l'Est
- Duration: 36 months
- Start date: 1 November 2013

Project objectives

- To advance harmonisation/standardisation of measurement methods for:
 - Skid resistance
 - Noise emission
 - Rolling resistance
 - of road pavements
- Prenormative research creating the technical basis for draft standards
- Close cooperation with CEN TC227/WG5 (Road materials surface characteristics)
 - Responsible for the standardisation process

History

Skid Resistance Test Programme

Objective

- The harmonisation of skid resistance measurements across Europe
 - Following the TYROSAFE Roadmap

Objective

- Derive conversion factors for friction indices based on similar groups of devices based on operating principle
 - Side-force
 - Longitudinal fixed slip
 - Low slip
 - High slip
- Gather data that can be analysed to develop the Common Scale(s)
 - Two rounds of testing at IFSTTAR facility in Nantes and on surrounding roads

Data collection

- First round of testing completed May 2014
 - 11 devices
 - 5 Side-force
 - 6 Longitudinal fixed slip
- Second round of testing completed April 2015
 - 18 devices
 - 8 Side-force
 - 10 Longitudinal fixed slip
- All devices from 1st trail also attended 2nd trial
 - Enables stability of the common scale to be assesses

Calibration

- Devices checked prior to testing
 - Tyre
 - Hardness, profile and pressure
 - Static load and wheel angle
 - Wetting system
 - Speed/distance

0

R@sanne

Friction tests

- Test speeds: 20 to 100 km/h (depending on the devices)
 - All devices tested at 40, 60 & 80 km/h
- 12 surfaces with a range of skid resistance and texture
- 5 repetitions for each surface and speed
- Test line of 50 cm

Ifsttar car in front of the devices (guide)

Latimourinière

Data Analysis and Results

- The devices were placed into 3 groups for the analysis
 - Based on operating principle
 - Represent different road user situations

Device group	Representative slip ratio
Side-force	34 %
Longitudinal – Iow slip	15-25 %
Longitudinal – high slip	over 60%

 Data reviewed to remove anomalies and outliers in accordance with ISO 5725-2

Based on Skid Resistance Index (SRI) approach
 DD CEN/TS 13036-2

 $SRI=BFe\uparrow S-S\downarrow Ref/S\downarrow 0$

 $S \downarrow 0 = a M P D \uparrow b$

Where

a, b, and B are device-specific calibration parameters

F is the measured skid resistance value

S is the vehicle operating speed

 S_{Ref} is the reference speed at which SRI values are reported

 S_0 represents the speed gradient of the skid resistance values, related to the surface texture

MPD is the Mean Profile Depth, a measure of the surface texture

- Used vehicle operating speed rather than tyre slip speed
- Not practical for all the different device groups to achieve a single reference slip speed within the normal range of vehicle operating speed
 - requires large, and error-prone, speed corrections to be applied

Device group	Representative slip ratio	Slip speed at 50km/h vehicle speed	Slip speed at 80km/h vehicle speed
Side-force	34%	17	27
Longitudinal – low slip	20%	10	16
Longitudinal — high slip	75%	37.5	60

When operating speed equals reference speed then:

SRI=BF

- This is the simplest form of harmonisation
- No need to correct for changes in friction with speed
- To determine the device-specific calibration factors, B, the value of the common scale for each test surface needs to be fixed
- Reference friction value for each surface based on average of all devices within a Group weighted by the number of each device type

Original data collected at 60km/h - all devices

Simple correction at 60km/h – all devices

Full SRI correction – side-force devices

Full SRI correction – longitudinal devices (low slip)

- Common scale developed for each device group
- Device specific parameters (a, b & B) calculated
- Precision of common scale assessed by calculation of the reproducibility standard deviation, $\sigma_{\rm R}$
 - σ_R around 0.05
 - compared to about 0.03 for fleets of the same device type
 - compared to about 0.1 for previous harmonisation experiments
 - Similar results from simple and full SRI approach
 - Similar results from both trials

Results – road circuit

- a, b & B values derived from test track results applied to measurements on trafficked roads
- Similar reproducibility values obtained
- Common scales do not appear to be influenced by "real world" test conditions

Next steps

Next steps - analysis

- Compare results for devices that took part in both trials
 - Different a, b & B values from each trial
 - Assessing whether these give significantly different results over the typical range of measurements
- Calculation of a, b & B values for device "families"
 - Grouping similar devices within a group (mainly on test tyre)
 - Gives similar levels of reproducibility as applying device specific values
 - This approach would help with implementation and maintenance of the common scale
- Impact of individual device types on precision
 - Basis for developing precision classes in the future

Next steps – Quality Assurance

- Develop procedures to maintain reliability in applying a Common Scale
- Will require robust QA procedures
 - Individual devices
 - Fleets of devices
 - Maintaining the common scales
 - Should remain stable if first two QA procedures are well maintained and any systematic drift is identified
 - Will still be some need for periodic checks to ensure that a, b & B values are still applicable
- Independent auditor role?

Conclusions

Conclusions

- Measurements made by different devices can be converted to a common scale
- Assumptions made in developing the TYROSAFE roadmap have been proven correct
 - Precision is improved by developing a common scales for different groups of devices based on their operating principle
 - Precision is at a "usable" level
- Robust QA procedures required

R@sanne

More information

- Visit the website <u>http://rosanne-project.eu/</u>
 - Overview of the project and Work Packages
 - Published deliverables

IFSTTAR

GDAŃSK UNIVERSIT

Runway Surface Conditions Assessment and Reporting Symposium – 1 April 2016

Presented by Martin Greene Principal Researcher, TRL Tel: +44 1344 770278 Email: mgreene@trl.co.uk

vti

ZAG