DGAC - SYMPOSIUM Runway Surface Conditions Assessment and Reporting

Paris, 31 March – 1 April, 2016

How to address the issue of fixing Maintenance/Minimum Friction Levels of a runway?

Armann Norheim Rapporteur ICAO FTF

1967 – ICAO Annex 15 COMPACTED SNOW AND ICE

- 0.40 and above
- 0.39 to 0.36
- 0.35 to 0.30
- 0.29 to 0.26
- 0.25 and below

- 5 GOOD
- 4 MEDIUM/GOOD
- 3 MEDIUM
- ² MEDIUM/POOR
- POOR

1973 – USAF AFWL – HYDROPLANING

Greather than 0,50

5 GOOD

4

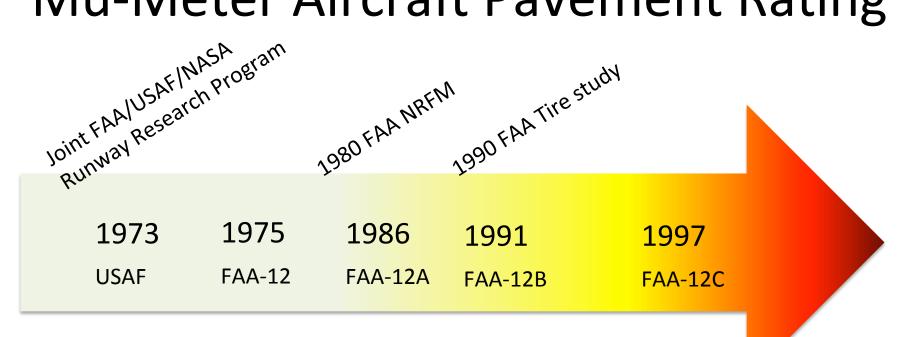
0,42 to 0,50

0,25 to 0,41

Less than 0,25

³ FAIR

2 MARGINAL


1 UNACCEPTABLE

HYDROPLANING POTENTIAL

MU-METER AIRCRAFT PAVEMENT RATING

MU	EXPECTED AIRCRAFT BRAKING RESPONSE	RESPONSE
GREATER THAN 0.50	G000	NO HYDROPLANING PROBLEMS ARE EXPECTED
0.42 - 0.50	FAIR	TRANSITIONAL
0.25 - 0.41	MARGINAL	POTENTIAL FOR HYDROPLANING FOR SOME A/C EXISTS UNDER CERTAIN WET CONDITIONS
LESS THAN 0.25	UNACCEPTABLE	VERY HIGH PROBABILITY FOR MOST AIRCRAFT TO HYROPLANE

Mu-Meter Aircraft Pavement Rating

• 0.50

0.42

- 0.50
- 0.50
- 0.72
- 0.72 0.66
- 0.52
- \bullet 0.52 0.38
- 0.42
- \bullet 0.42 0.26

• 0.25

40 MPH - 60 MPH

1975 – FAA

MINIMAL AVERAGE FRICTION REQUIREMENT FOR RUNWAY PAVEMENTS

0.50 **5** MINIMUM

3

After the runway has been cleared of contaminants, the AVERAGE WET MU VALUE should not be no less than 0.50

1991 – FAA FRICTION LEVEL CLASSIFICATION

2

0.72 - 0.66

0.52 - 0.38

0.42 - 0.26

NEW DESIGN/CONSTRUCTION

MAINTENANCE PLANNING

3 MINIMUM

This table was developed from qualification and correlation tests conducted at NASA Wallops Flight Facility in 1989.

FAA TABLE 3-3

(ICAO TABLE A-1)

2013 – ICAO Annex 15 COMPACTED SNOW AND ICE

- 0.40 and above
- 0.39 to 0.38
- 0.35 to 1.30
- 0.29 to 0.26
- 5.25 and below

- 5 GOOD
- 4 MEDIUM/GOOD
- 3 MEDIUM
- 2 MEDIUM/POOR
- 1 POOR

New SNOWTAM based upon TALPA ARC includes «wet runway»

RUNWAY SURFACE DESCRIPTION

PILOT – DOWNGRADING CRITERIA

DRY

WET

«SLIPPERY WET» runwaySTANDING WATER

6

5 GOOD

4 GOOD TO MEDIUM

3 MEDIUM (RWYCC 3)

2 MEDIUM TO POOR

1 POOR

LESS THAN POOR

PARIS 1860ish

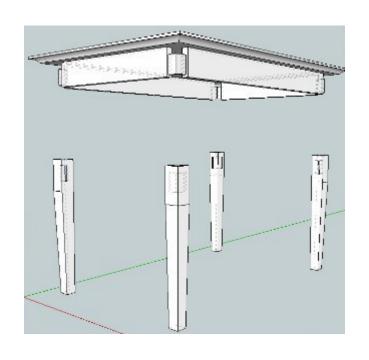
Slippery (wet) - Horses that fell in Rue de Sèze and Rue Neuve des Capucines

6 months period

1308 – Sandstone – (R de Sèze)

1409 – Asphalt – (R Neuves des

Capucines)



• 1873 – London

• 1885 – Berlin

• 1885 – United States – 10 cities

MINIMUM FRICTION LEVEL [MATRIX] Analogy – four leg table – stable WET RUNWAY

Analogy of a four leg table

- 1. Leg Geometry (Drainage ponding)
- 2. Leg Macrotexture
- 3. Leg Skid resistance
- 4. Leg Runway End Safety Area (RESA)

If one leg is missing – then we do not have a stable and safe condition. However – regarding surface friction characteristics we need to have focus on the RUNWAY. Three of the legs belongs to the RUNWAY SURFACE FRICTION CHARACTERISTICS.

MINIMUM FRICTION LEVEL [MATRIX]

GEOMETRY

MACROTEXTURE

SKID RESISTANCE

MFL [Geometry, Macrotexture, Skid resistance]

Known technology and measurement standards. No specific challenge.

MTD (Volume)

- NASA grease patch
- EN-13036-1
- ASTM E 965-96 Withdrawn 2015

Relationship between NASA method and EN-13036-1 not universally accepted.

Spot measurements

Mu-Meter 0.50/0.42/0.25 (1973)

No established reference for calibration of friction measuring devices

- Manage uncertainty
 - · Reference device
 - Calibration
 - Competency

Management

- ISO/IEC 17025
- ISO/IEC 17043
- ISO 9001

Aggregates

- EN 932-1, 2 and 3
- EN 933-1, 2, 3, 4, 5, 7, 9 and 11
- EN 1097-1, 2, 3, 5, 6, 7 and 8

Shape, size, resistance to wear and polishing.

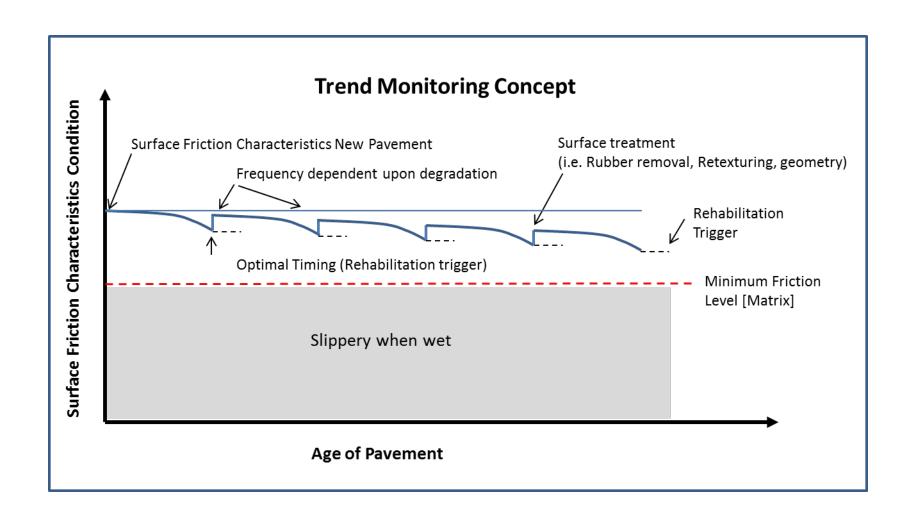
Built in qualities

MPD (profile)

• ISO 13473-1, 2, 3, 4 and 5

Relationship MPD vs. MTD are device type dependent.

Continuous measurements


Friction measuring devices are considered needed to measure the polishing of aggregates embedded in a pavement surface.

However desired level of precision cannot be achieved.
Proper management needed.

MINIMUM FRICTION LEVEL [MATRIX]

GEOMETRY	MACROTEXTURE	SKID RESISTANCE		
MFL [Geometry, Macrotexture, Skid resistance]				
Known technology No challenge	Historic, MTD Emerging, MPD (Norway)	Mu-Meter 0.42 (FAA)		
Laboratory EN (CEN) standards Built in quality in pavement.	EN standard for MTD ISO standard for MPD	France has developed proper management on State level		
ContractAIP information?Basis for trend monitoring	 Decisions needed for proper management on regional level (EASA) 	 Decisions needed for proper management on regional level (EASA) 		

TREND MONITORING

MINIMUM FRICTION LEVEL [MATRIX]

GEOMETRY	MACROTEXTURE	SKID RESISTANCE		
TREND MONITORING				
Change to geometry over time.	Rubber build upWear/damage from heavy equipment	 Polishing from traffic (aircraft and maintenance equipment) 		
Trigger:	Trigger:	Trigger:		
 Ponding No drainage due to prevailing weather (wind) 	 Loss of macrotexture Minimum level (not to go below) set by the State 	 Level set by the State Not to go below Mu-Meter 0.42 		