

Détection de FODs par un Radar millimétrique large bande 78 GHz

Ch. Pichot², C. Migliaccio²

- 1. the Institute of Microwave Techniques Université d'Ulm Albert-Einstein-Allee 41 – 89081 Ulm - Allemagne
- 2. LEAT Université de Nice-Sophia Antipolis, CNRS UMR 6071 250 rue A. Einstein 06560 Valbonne France

Avec le support du STAC-DGAC pour les tests à Aix Les Milles

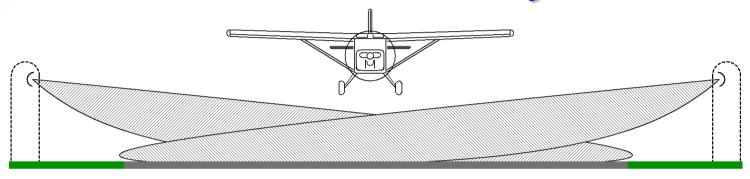
Plan de la présentation

- Présentation du système
- Le Radar milimétrique
- Détection 1D
- Détection 2D
- Conclusions et persepctives

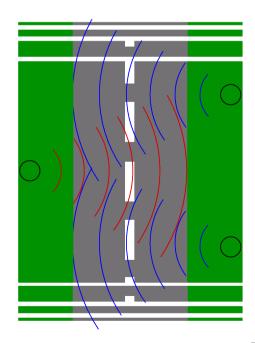
Systèmes existants

utilisent un radar millimétrique associé à un capteur optique

Fonctionnement: le radar détecte, la caméra zoome Fréquence mm: 94 GHz (atténuation atmosphérique minimale)


Nos objectifs:

- Utiliser les 5 GHz de bande passante disponible: 76-81 GHz
- Tirer partie des circuits MMIC existants dans cette bande (automobile)
- => Développer un module Radar compact et bon marché pour une implantation multiple sur les pistes



Présentation du système

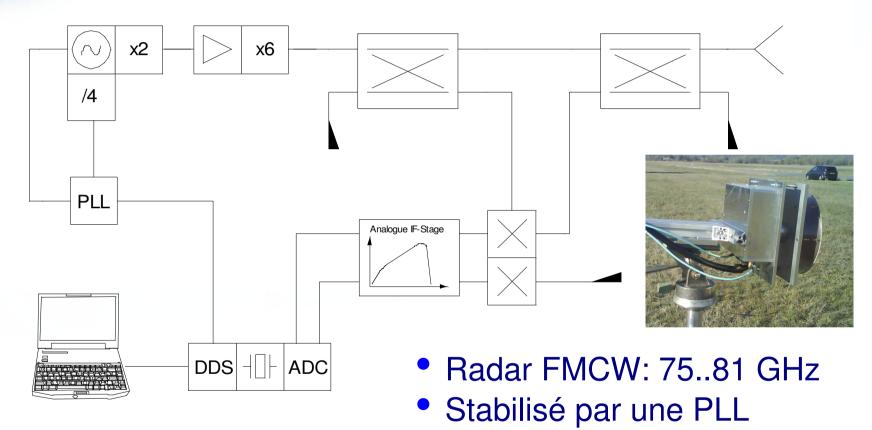
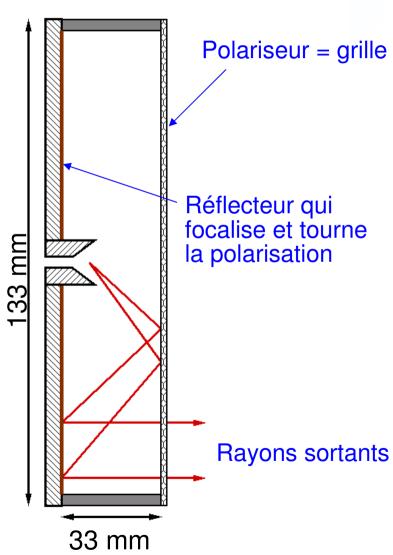

- Système distribué sur la piste
- Capteurs placés de part et d'autre de la piste
- Obtenir de meilleures performances en:
 - faisant de la fusion entre les différents capteurs
 - utilisant un système multi-statique

Schéma bloc du Radar

- Référence très linéaire (DDS)
- Emission et acquisition de données synchronisées

Mesures cohérentes

- Signaux émis et acquisition de données verrouillées en phase à un oscillateur à quartz
- Mesures reproductibles sur le long terme:
 - Augmentation du SNR grâce à une intégration cohérente avec les mesures antérieures
 - Soustraction de l'environnement pour améliorer le rapport signal à Clutter
- Configuration utilisée
 - Rampe de 5 ms avec 6 GHz de bande passante
 - Intégration avec 16 mesures antérieures

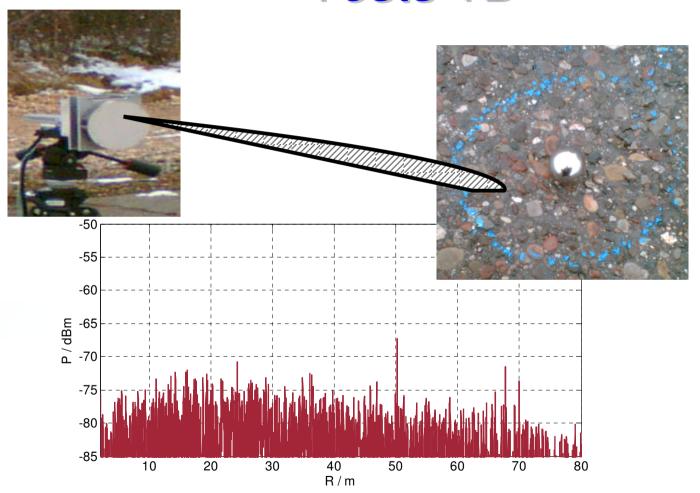


L'antenne

- Antenne réflecteur replié
- Antenne imprimée mono-couche: Focalisation + conversion de polarisation
- Compacte et faible coût

Tests

- Etape 1: choisir des FODs représentatifs
- Etape 2: tests en une dimension (1D)
- Etape 3: tests en deux dimensions (2D) avec scan manuel


Choisir des FODs représentatifs Les FODs peuvent être:

- des pièces de métal tombées des avions
- des vis et des boulons
- des habits
- des bris de verre
- des outils
- des éclats de pneus ...

Tests 1D

• La sphère de 25 mm est détectée à 50 m avec 10dB de SNR

Tests 1D : résumé

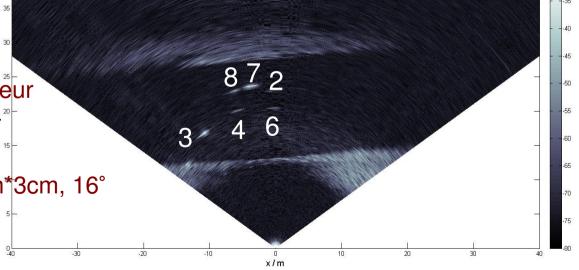
Pièce métallique pliée

Eclat de pneu

Objects	Rmax/Position
Metallic plate: 20 cm*30 cm*0.5 cm	Not detected
PVC plate: 20 cm*30 cm*3.5 cm	50 m/horizontal 50 m/45°
Curved piece of metal	110 m
Piece of tire (10 cm)	90 m
Wood bloc: 22.5 cm*7 cm*7 cm	110 m
Metal cylinder r=3 cm, l=19 cm	110 m
Nut, h=21 mm, 10 mm thick	40-30 m
Screw, I=6.5 cm,	90 m/vertical
hexagonal head 17 mm	40 m/horizontal
Metallic sphere	90 m, d=40 mm
	40 m, d=25 mm

Tests 2D: scan à 20m

- Scan manuel avec une antenne pinceau
- Objets détectés de formes et de tailles variées

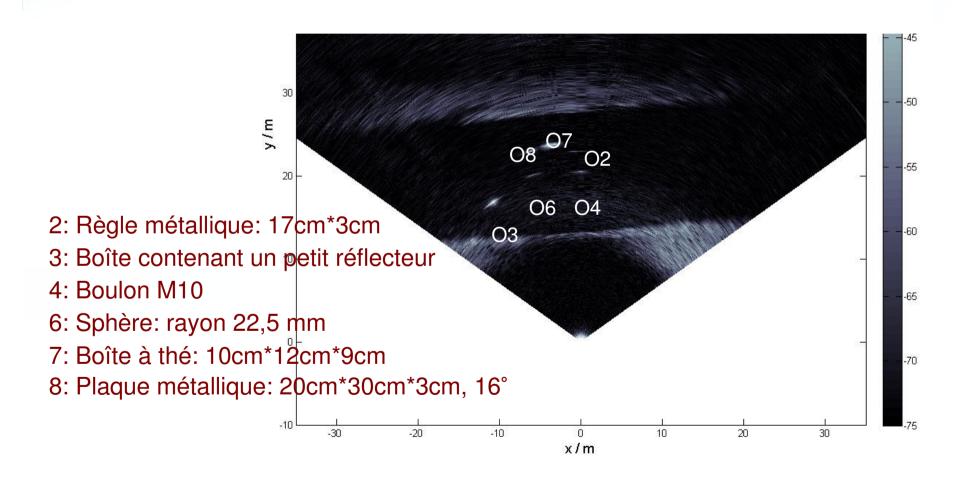


3: Boîte contenant un petit réflecteur

4: Boulon M10

7: Boîte à thé: 10cm*12cm*9cm

8: Plaque métallique: 20cm*30cm*3cm, 16°



Tests 2D : scan à 30m

Conclusion et perspectives

- La radar à 77 GHz est bien adapté à la détection de FODs
- Radar large bande (6 GHz)
- Validation 1D
- Validation 2D avec scan manuel
- ➤ Intégration d'une antenne en cosec²
- > Ajouter de la fusion et des mesures multi-statiques