

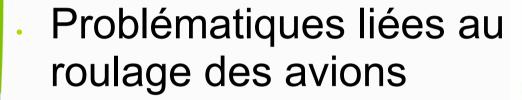
Journée technique 2011

Impact des systèmes de roulage alternatifs sur la capacité aéroportuaire

Alexandre GAMA - DGAC/STAC Nicolas VUONG - Airbus S.A.S.

Ressources, lerritoires et habitats Énergie et climât Développement dur Prévention des risques Infrastructures, transports et me-

Présent pour l'avenir



Plan

- Contexte et objectif de l'expertise
- Méthodologie appliquée
- Résultats obtenus
- Perspectives

Contexte

 Les solutions alternatives principales

Le roulage des aéronefs

- Phase du vol où les moteurs sont les moins efficaces
- Particulièrement pénalisant pour les court-courriers :

Exemple: Paris-Londres en A320

- •≈ 350 km
- ≈ 30 minutes de vol, ≈ 1,4 t de carburant,
 ≈ 4,4 t de CO₂
- ≈ 15 minutes de roulage, ≈ 150 kg de carburant,
 ≈ 470 kg de CO₂

Plus de 10 % du carburant consommé et du CO₂ émis le sont pendant le roulage

Solutions alternatives

♣Tractage

et du Logement

Solutions alternatives

Motorisation auxiliaire embarquée

Solutions alternatives

Avantages :

- Systèmes énergétiquement plus efficients
- Réduction des durées d'utilisation moteur
- Réduction de l'utilisation des systèmes de freinage, en particulier pour les mono-couloirs

Inconvénients :

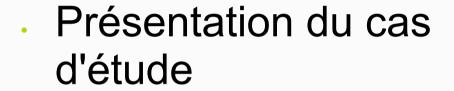
Performances moindres :

Roulage :	Classique	Alternatif
Vitesse	20 kts	17 kts
Durée d'accélération	22 s	90 s

 Contraintes de structures et/ou de masses pour les avions

Problématique de l'expertise

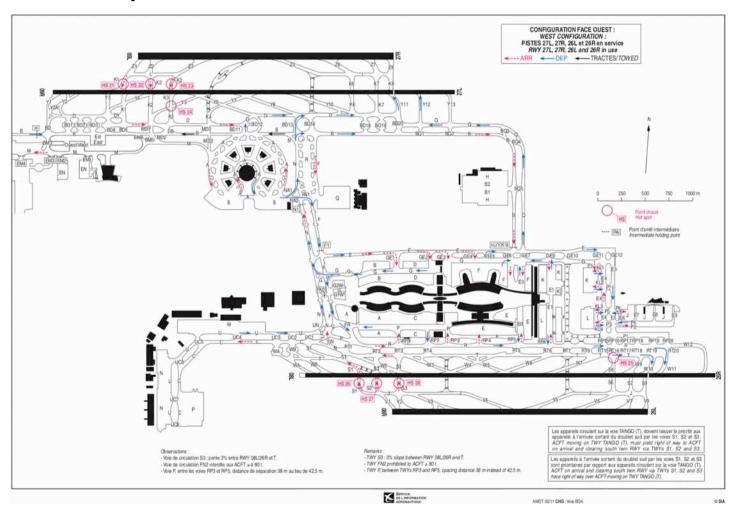
Domaine de l'expertise :


- Impact sur la capacité d'un grand aéroport :
 - Trafic dense
 - Longues distances de roulage

Questions posées :

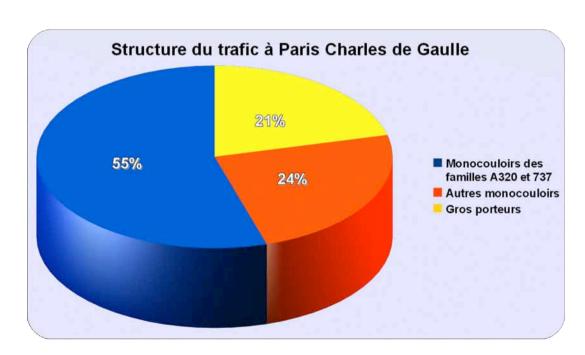
- Qualification et quantification des perturbations de l'écoulement du trafic dans le cas de l'utilisation des systèmes alternatifs les plus contraignants
- Identification des influences respectives des vitesses et accélérations sur l'écoulement du trafic

Méthode


Méthodologie appliquée

Cas étudié

Aéroport Paris-Charles de Gaulle



Cas étudié

- •Une journée de trafic (3 septembre 2009)
 - Configuration face à l'Ouest
 - 1 536 mouvements (768 arrivées + 768 départs)

Étude par simulation

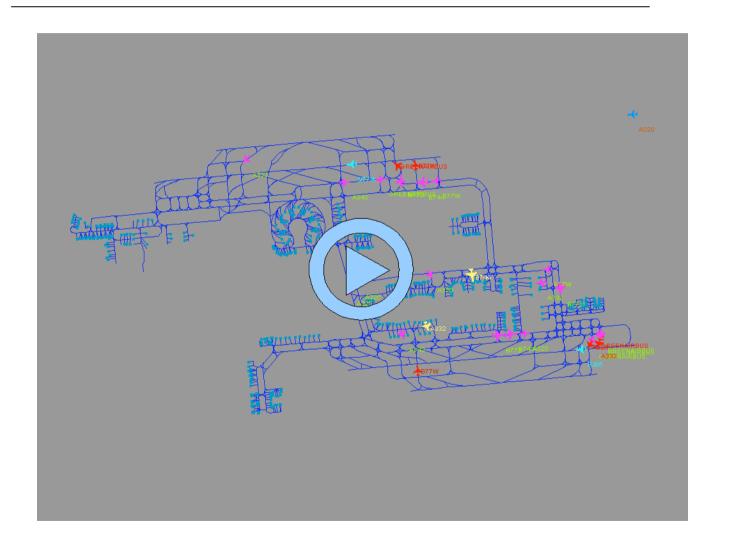
Paramètres variables étudiés :

- Vitesses et accélérations des avions
 - Modélisation à vitesse de roulage constante
 - Modélisation des vitesses de roulage en fonction des rayon de courbure des voies de circulation
- Population d'avions équipés
 - Proportions variables des avions des familles Airbus A320 et Boeing 737 afin de représenter une intégration progressive des systèmes alternatifs

Simulations Simmod PLUS!

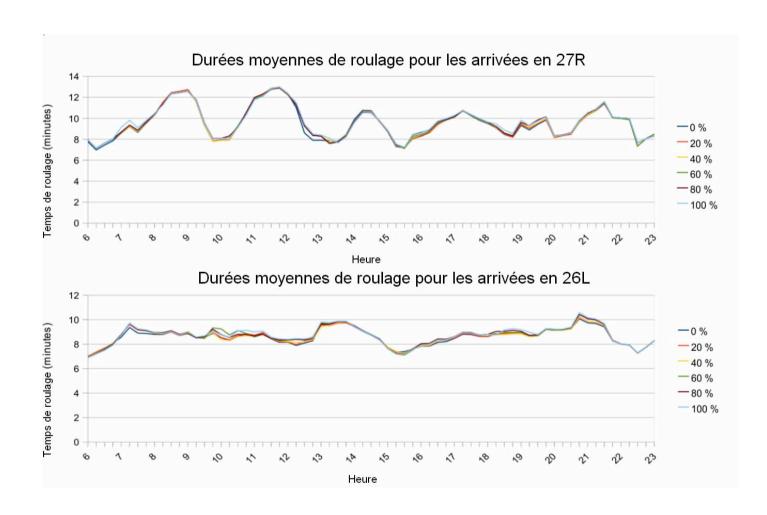
Une simulation par scénario étudié

Étude par simulation


Nombre de scénarios de référence	2 (1 modélisation à vitesse constante, 1 à vitesse variable)
Nombre de scénarios d'étude	13 (3 pour vitesse constante, 10 pour vitesse variable)
Paramètres variables	Pourcentages de la flotte concernée, vitesses, accélérations des avions équipés
Flottes d'avions équipés	A320 et 737 au départ seulement

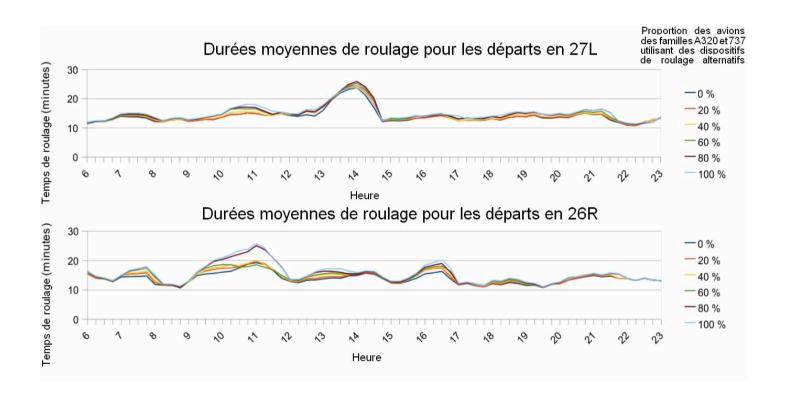
des Transports et du Logement

Étude par simulation

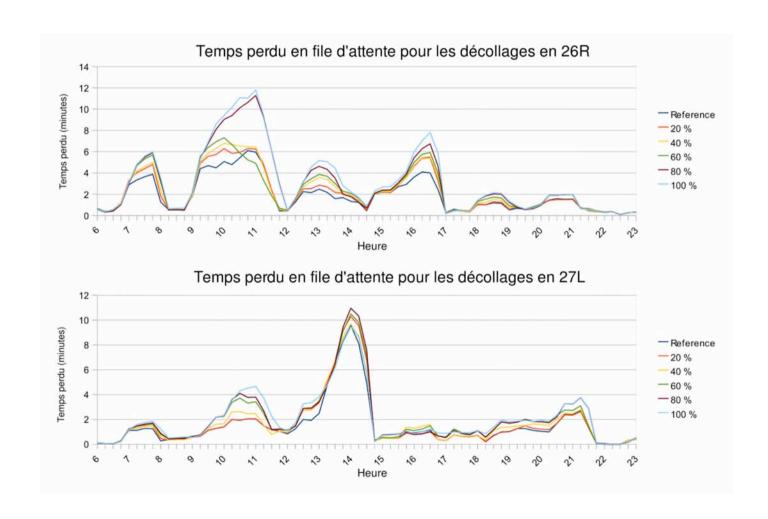

des Transports et du Logement

Aperçu des résultats obtenus dans le cas de la modélisation à vitesses variables, 17 kts maximum pour les systèmes alternatifs

Conclusions générales de l'expertise



et du Logement



et du Logement

Conclusions

- Impact négligeable en heure creuse
- Impact variable en heure de pointe suivant :
 - · Le doublet de piste
 - L'heure
- Les retards augmentent au départ avec la proportion d'avions équipés de systèmes alternatifs.
- L'augmentation des retards totaux est principalement due à l'augmentation des retards en file d'attente pour le décollage.

Perspectives

Éléments à approfondir pour la suite du travail sur la problématique du roulage moteurs éteints

Perspectives d'approfondissement

- Évaluation des bénéfices (économies de carburant, réduction des émissions) des systèmes alternatifs
- Amélioration de la modélisation des files d'attente
- Réalisation de plusieurs simulations par scénarios
- Évaluation des impacts dans le cas d'une journée de trafic plus important

Merci de votre attention

Ressources, territoires et habitats Énergie et climat Développement durable vention des risques Infrastructures, transports et

> Présent pour l'avenir