

AUN2014 : Airports in Urban Networks 15-16 Apr 2014 CNIT - Paris la Défense (France)

Integrating Human factors in airport security checkpoints: a decision aiding analysis of structural incoherencies

Maréchal Ludovic, DGAC STAC, France Crévits Igor, University of Valenciennes, France Labour Michel, University of Valenciennes, France Vanderhaegen Frédéric, University of Valenciennes, France

What is airport security?

Aim: Fighting against terrorism

- How? By preventing the introduction of prohibited items into aicrafts
 - > Security equipments
 - Security staff
 - Operationnal procedures...

Security division @STAC

- What is our role?
 - Assessment and certification of security equipments
 - > Access control in restricted areas
 - Expertise for French CAA
 - ➤ Innovation for the future

Human factors ... what for?

- Better security
- Better passenger experience

Ludovic MARECHAL

- Value for money
- Better working conditions for security staff

Human Factors @STAC

- Better use of security equipments in airports
 - > Better decisions by security agents on the field
 - Better implementation of security measures
- Evaluation of the global security performance
 - Toward the certification of the whole system, rather that each layer
- Providing guidelines for R&D

Ludovic MARECHAL

Where to start?

- Systemic and scientific approach
- Study based on a partnership: STAC Valenciennes University (LAMIH)
 - Decision aiding process
 - > Information and communication sciences
 - Human machine cooperation
- Aim: modeling the security checkpoint, measuring its performance, and providing guidelines for its evolution

Security checkpoints: a decision problem

- Input: Passengers and bags
- Problem: Any prohibited items?
- Decision: YES or NO
 - Based on the security equipments
 - Agregation of information
- Output:
 - Passengers and bags secured
 - Passengers on time

Method of the study

- Cooperation between
 - Scientific experts of decision aiding, social sciences and engineers
 - Experts of airport security

Ludovic MARECHAL

- Scientific theory: decision aiding process
- Review of the Human Factors Litterature
- Interviews and observations during trials of new security equipments

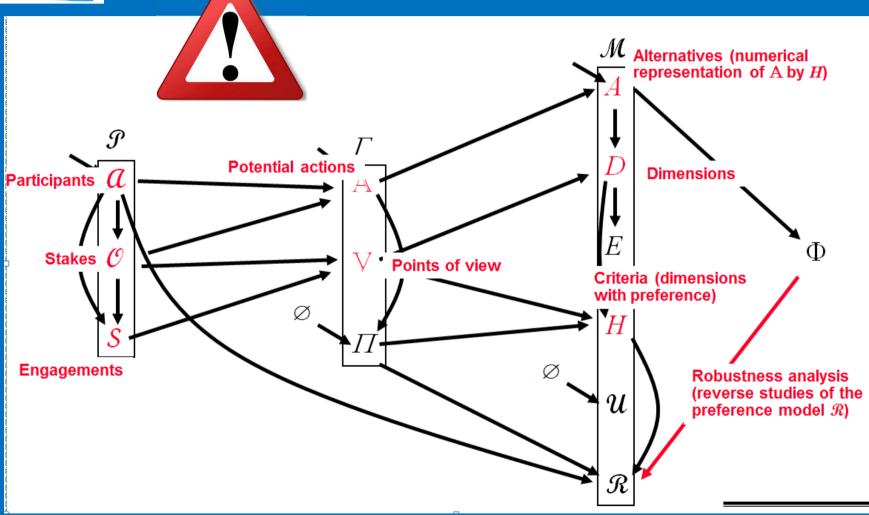
Decision process

- Decision Process: procedural rationality
 [Simon, 1977], step by step:
 - ➤ Intelligence: putting together the elements of a designated problem
 - > Design: building the solutions
 - Choice: selecting the appropriate solution
 - ➤ Review: checking the consistency with the real world

Decision aiding process

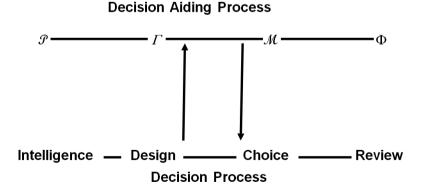
- [Tsoukiàs, 2007]
- Clarification of Procedural rationality,
 with a client- analyst relationship

- Seeks to reduce the decision making irrationality:
 - ightharpoonup Problem situation \mathscr{T} : in understanding the problem itself
 - ightharpoonup Problem formulation Γ : in expressing the problem solutions
 - ightharpoonup **Evaluation Model** $\mathcal M$: By providing a model for identifying the most accurate solution
 - ightharpoonup Final recommendation Φ : By coming back eventually to reality



Decision aiding process:

the matrix



The matrix: a great tool...

- To identify the structural incoherencies
- To integrate new concepts and new equipments
- For a better integration of human factors, for enhanced decisions on the field

First model based on Simon Decision Process

- Intelligence: welcoming prior the checkpoint
 - Checking boarding pass, advising passengers on the security procedures...
- Design: preparation
 - Divesting, loading bags onto th conveyor belt, monitoring passengers
- Choice: screening of PAX and BAG
 - Searching for prohibited items with Xrays...
- Review: filtering
 - ➤ GO to restricted area, or call for LEO

Identification of incoherencies

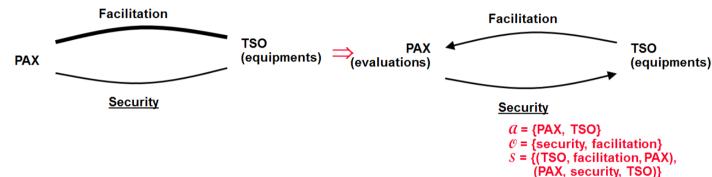
- Theory: Decision Aiding Process [Tsoukiàs, 2007]
 - > Filling in the boxes of the matrix
- Litterature: ICAO documents, ECAC, studies...
- Observations, interviews, in CDG, ORY, NICE...

→ 7 incoherencies identified

Identification of incoherencies

- 1. Passengers = participants of the problem
 - PAX endure the screening
- Security= stakes not clearly expressed
 - Tensions between security staff and PAX
- 3. Passengers under contradiction
 - All passengers treated as a potential terrorist

Identification of incoherencies


- 4. Passengers: stakeholders and targets of the decision
 - good preparation helps looking for real threat
- 5. **Technical** robustness: Equipments cannot detect evolutive threats
 - Human perception and technological responses need to be complementary
- 6. Security staff: judge, and stakeholder
 - Maximum supervision, lack of initiatives
- 7. External performance evaluation
 - > Penalty when error, preventing continuous improvement

- PAX engagement
 - > PAX as co-actor of security
- Security staff empowerment
 - Security staff as a source of progress
- Sensemaking
 - Performance evaluation based on operational significant data

Conclusion

- Scientific and operational approach to provide guidance for checkpoint evolution
- First step of the study: headlines for a better inclusion of Human Factors
- Decision Aiding Process: a powerful tool towards security: reliability, robustness, resilience, dissuasion...
- Coming up: numerical approach for real time decision making, and optimized monitoring

Email:

Ludovic.marechal@aviation-civile.gouv.fr